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SUMMARY

As the cellular power plant, mitochondria play a sig-
nificant role in homeostasis. To maintain the proper
quality and quantity of mitochondria requires both
mitochondrial degradation and division. A selective
type of autophagy, mitophagy, drives the degrada-
tion of excess or damaged mitochondria, whereas
division is controlled by a specific fission complex;
however, the relationship between these two pro-
cesses, especially the role of mitochondrial fission
during mitophagy, remains unclear. In this study,
we report that mitochondrial fission is important for
the progression of mitophagy. When mitophagy is
induced, the fission complex is recruited to the
degrading mitochondria through an interaction
between Atg11 and Dnm1; interfering with this inter-
action severely blocksmitophagy. These data estab-
lish a paradigm for selective organelle degradation.

INTRODUCTION

Mitochondria are double-membrane-bound organelles that play

significant roles in a variety of cellular metabolic reactions. This

organelle is central to cellular physiology, supplying energy

and certain metabolites, but it also generates harmful reactive

oxygen species. Thus, mitochondrial homeostasis must be

maintained, which can be a costly process. As a result, cells

degrade superfluous, or extensively damaged, mitochondria;

however, this is a considerable structural challenge considering

the extended, reticular nature of this organelle. Constitutive

mitochondrial fusion and fission, as well as biogenesis and

degradation, make the mitochondria highly dynamic. In the

budding yeast Saccharomyces cerevisiae, a complex containing

Fis1, Dnm1,Mdv1, andCaf4 controls the fission ofmitochondria,

whereas fusion is regulated by the action of Fzo1, Ugo1, and

Mgm1 (Okamoto and Shaw, 2005). The degradation of mito-

chondria is mediated by mitophagy, a selective type of macro-

autophagy (hereafter referred to as autophagy). The study of

mitophagy has attracted increasing attention in recent years;

this process plays significant roles in various aspects of normal

physiology, such as the removal of mitochondria during the

maturation of erythroid cells, whereas its dysfunction is associ-

ated with certain pathophysiologies, such as Wolfram syndrome
2 and Parkinson disease (Kanki and Klionsky, 2009; Kanki et al.,

2009b; Matsuda et al., 2010; Narendra et al., 2008, 2010;

Okamoto et al., 2009; Schweers et al., 2007; Vives-Bauza

et al., 2010).

In eukaryotic cells, autophagy functions as a lysosome/vacu-

ole-dependent mechanism for the degradation of damaged or

obsolete proteins and organelles and can occur in either nonse-

lective or selective modes. Nonselective autophagy functions to

sequester bulk cytoplasm into double-membrane vesicles,

termed autophagosomes, which are then transported to the

lysosome/vacuole where the cargo is degraded (Xie and Klion-

sky, 2007). In contrast, selective autophagy targets specific pro-

teins or organelles as cargos, such as peroxisomes (pexophagy)

and mitochondria. In the case of selective autophagy, a general

model has been established in which a ligand on the target

interacts with a specific receptor; the receptor in turn binds a

scaffold protein, which links the cargo-receptor complex with

the autophagy machinery (Mijaljica et al., 2012). For example,

in yeast mitophagy, Atg32 is a mitochondrial protein that serves

as a selective receptor (a ligand, if one exists, has not been iden-

tified), which binds the Atg11 scaffold. Atg11 is needed for sub-

sequent engagement of the mitochondria with Atg8-PE, which

lines the initial sequestering compartment, the phagophore.

Due to its potentially large size, one key question with regard

to mitophagy concerns the role of mitochondrial fission. Work

inmammalian cells suggests that mitochondrial fission facilitates

the process of mitophagy (Tanaka et al., 2010; Twig et al., 2008);

however, it is not clear whether these two processes occur inde-

pendently or whether they function in a coordinated manner.

Here, we show that the Atg32-Atg11 interaction marks de-

grading mitochondria. Furthermore, Dnm1 is recruited to these

mitochondria through an interaction with Atg11. When Dnm1

loses its interaction with Atg11, the degradation of mitochondria

is severely blocked. These results support the hypothesis that

mitochondrial fission machinery participates in, and facilitates,

mitochondrial division in an early step of mitophagy and indicate

that Atg11 plays a role as a scaffold that recruits the fission

components in addition to its role in connecting the target with

the autophagic machinery.

RESULTS

The Mitochondrial Fission Complex Is Required
for Mitophagy
In our recent genome-wide yeast mutant screen for mitophagy-

defective strains, we found that DNM1, a gene encoding a
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Figure 1. Mitochondrial Fission Is Required for Mitophagy

MitoPho8D60 activity is reduced in strains with deletions of genes encoding

mitochondrial fission proteins. Wild-type (KWY20), atg32D (KWY22), dnm1D

(KDM1013), fis1D (KDM1002), mdv1D (KDM1006), caf4D (KDM1011), mdv1D

caf4D (KDM1012), and whi2D (KDM1010) cells in the mitoPho8D60 back-

ground were cultured in YPL to mid-log phase and then shifted to SD-N for

6 hr. The mitoPho8D60 assay was performed as described in Experimental

Procedures. Error bars correspond to the standard error and were obtained

from three independent repeats. *p < 0.01; **p < 0.001; ***p < 0.0001.
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dynamin-related GTPase required for mitochondrial fission, is

required for efficient mitophagy (Kanki et al., 2009a). In

S. cerevisiae, the mitochondrial fission complex consists of

four components: Fis1, Dnm1, Mdv1, and Caf4. Fis1 is a

conserved integral membrane protein and is required for the

proper localization of Dnm1 and Mdv1 on mitochondria (Karren

et al., 2005; Mozdy et al., 2000; Tieu and Nunnari, 2000). Dnm1

assembles specifically at the sites where mitochondrial fission

occurs (Bleazard et al., 1999). Mdv1 and Caf4 redundantly

bridge the interaction between Fis1 and Dnm1 (Griffin et al.,

2005; Tieu and Nunnari, 2000). Although Fis1 is distributed

evenly on mitochondria, Dnm1 and Mdv1 show colocalized

puncta on mitochondrial tubules, and it is thought that those

puncta are the sites where mitochondrial division takes place.

We first sought to determine whether all four of the correspond-

ing gene products are involved in mitophagy.

In S. cerevisiae, mitochondria proliferate when cells are

cultured in a nonfermentable carbon source, such as lactic

acid or glycerol. When these cells are subjected to conditions

of nitrogen starvation in the presence of a fermentable carbon

source, such as glucose, mitophagy is induced to degrade

the excess mitochondria (Kanki and Klionsky, 2008). We

examined the activity of mitophagy in the absence of DNM1,

FIS1, MDV1, or CAF4 using an enzymatic assay in which a

mitochondrially targeted zymogen, mitoPho8D60, is activated

following mitophagic delivery to the vacuole (Kanki et al.,

2009a). PHO8 encodes an alkaline phosphatase that is trans-

ported to the vacuole via the ALP pathway (Klionsky and Emr,

1989). Pho8D60, a mutant form of Pho8 in which the N-terminal

60 amino acids including the transmembrane domain have been

removed, localizes to the cytoplasm and is unable to be

transported to the vacuole through the ALP pathway. We fused

cytochrome c oxidase subunit IV (Cox4) with Pho8D60 and

named the fusion protein mitoPho8D60. This fusion protein is

localized in mitochondria and its transport to the vacuole, which

results in enzyme activation, is dependent on mitophagy (Kanki

et al., 2009a). Therefore, calculating the phosphatase activity
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of mitoPho8D60 can be used to monitor mitophagy activity.

We found that mitophagy was severely blocked in dnm1D and

fis1D cells, partially blocked in mdv1D cells, and essentially

normal in caf4D cells (Figure 1). Previous work implied a redun-

dant function for Mdv1 and Caf4, with Mdv1 being more impor-

tant than Caf4 in mitochondrial fission (Naylor et al., 2006).

Accordingly, we examined the mdv1D caf4D double-deletion

mutant, which showed a strong defect in mitophagy, similar to

dnm1D and fis1D (Figure 1). These results suggest that the intact

mitochondrial fission machinery is required for mitophagy.

Previously, it was reported that mitochondrial fission is not

required for rapamycin-induced mitophagy (Mendl et al., 2011).

In this study, the diminished mitophagy activity in fis1D cells is

reported to be due to a secondary mutation in the WHI2 gene.

Therefore, we tested mitophagy activity in whi2D cells using

the mitoPho8D60 assay. Mitophagy activity in whi2D cells was

essentially identical to that of the isogenic wild-type cells (Fig-

ure 1). The discrepancy between our results and those of Mendl

et al. may be due to the different methods used to induce

mitophagy. In the previous study, yeast cells were cultured in

medium containing glycerol and mitophagy was induced by

the addition of rapamycin; however, these conditions require

24 hr of drug treatment to induce a high level of mitophagy. In

our study, mitochondrial proliferation was achieved by growth

in lactic acid and mitophagy was induced by nitrogen starvation

in the presence of glucose; a similar level of mitoPho8D60

activity was detected in the wild-type and whi2D strains within

6 hr. In general, nitrogen starvation induces a substantially stron-

ger response than treatment with rapamycin.

The Atg32-Atg11 Interaction Marks Degrading
Mitochondria during Mitophagy
Mitochondrial fission is proposed to occur on mitochondrial

termini (Griffin et al., 2005), which may therefore represent a

very early stage of mitophagy. Thus, the first requirement was

to identify a marker that would enable us to specifically identify

mitochondria destined for degradation. Previously, we and

others showed that Atg32 and Atg11 directly participate in an

early event of mitophagy (Aoki et al., 2011; Kanki et al., 2009b;

Kondo-Okamoto et al., 2012; Okamoto et al., 2009). When

mitophagy is induced, Atg32 recruits Atg11 to the mitochondria,

and their interaction is required for the delivery of mitochondria

to the phagophore assembly site (PAS), the location of autopha-

gosome formation, and eventually into the vacuole for degrada-

tion. In mammalian cells, PARK2/Parkin is recruited to, and

thereby selectively marks, depolarized mitochondria (Narendra

et al., 2008); in yeast, however, Atg32 is evenly distributed on

the mitochondrial tubules, even though only a relatively small

portion of the total mitochondrial population will ultimately be

degraded (Figure S1A available online; Mao et al., 2011). There-

fore, Atg32 alone cannot serve as the sole marker of the degrad-

ing mitochondria.

We took advantage of the bimolecular fluorescence comple-

mentation (BiFC) assay (Sung and Huh, 2007), in which the

Venus yellow fluorescent protein (vYFP) is split into two frag-

ments, VN (N terminus of vYFP) and VC (C terminus of vYFP);

we fused VN to Atg32 and VC to Atg11 by integrating the corre-

sponding constructs at the chromosomal ATG32 and ATG11

loci. Fluorescence from these chimeras can only be observed
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Figure 2. BiFC 32-11 Dots Mark Degrading

Mitochondria during Mitophagy

(A) A BiFC assay was performed for Atg32, Atg11,

Om45, and Atg9. Cells containing BiFC pairs

(Atg32-Atg11 in KDM1501, Atg32-Atg9 in

KDM1519, and Atg11-Om45 in KDM1520) were

cultured in YPL and shifted to SD-N for 1 hr,

followed by analysis by fluorescence microscopy;

images are representative pictures from single

Z-sections. DIC, differential interference contrast.

Scale bar, 2 mm.

(B) Quantification of (A). Twelve Z-section images

were projected and the percentage of cells that

contained 32-11 dots was determined. Standard

error was calculated from three independent ex-

periments. *p < 0.01.

(C) VN-ATG32 VC-ATG11 (KDM1501) cells,

transformed with a plasmid encoding Mito-RFP,

were cultured in SML and shifted to SD-N from

10min to 1 hr, and the cell samples were observed

by fluorescence microscopy. CellTracker Blue

CMAC was used to stain the vacuolar lumen.

Arrowheads indicate the 32-11 dots that localized

on the mitochondrial reticulum; and arrows indi-

cate the 32-11 dots that localized on the vacuolar

periphery. All of the images are representative

pictures from single Z-sections. DIC, differential

interference contrast. Scale bar, 2 mm. The inset in

row 5, panel 4 corresponds to the large vacuole,

reducing the red intensity to demonstrate that

the intravacuolar punctum corresponds to a

green 32-11 dot that has not yet been degraded.

See also Figure S1.
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when the two proteins interact and bring the two fluorophore

fragments into close proximity. We tested the VN-Atg32-VC-

Atg11 interaction in both growing (YPL) and mitophagy-inducing
Developmental Cell 26,
(SD-N) conditions. When expressing both

VN-Atg32 and VC-Atg11, �9% of the

cells showed vYFP dots in growing condi-

tions; however, when mitophagy was

induced, �42% of the cells displayed

vYFP dots, indicating the colocalization

of these two proteins (Figures 2A and

2B). In contrast, neither VN-Atg32 in

combination with another autophagy-

related protein fusion construct, Atg9-

VC, nor a different chimera containing

the Om45 mitochondrial outer mem-

brane protein fused to VN (Om45-VN) in

combination with VC-Atg11 generated

fluorescent puncta in either growing

or mitophagy-inducing conditions (Fig-

ure 2A). These results were consistent

with our previous report that the interac-

tion of Atg32 and Atg11 is enhanced

when mitophagy is induced (Kanki et al.,

2009b). The chimeric constructs were

stable under mitophagy-inducing condi-

tions and did not show an appreciable

change in protein level, indicating that
the appearance of the fluorescent dots reflected colocalization

and was not due to a change in protein concentration

(Figure S1B).
9–18, July 15, 2013 ª2013 Elsevier Inc. 11
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We next asked whether the VN-Atg32-VC-Atg11 BiFC fluo-

rescent puncta (hereafter referred to as 32-11 dots) repre-

sented degrading mitochondria. We first examined the activity

of mitophagy in the presence of the fusion proteins VN-Atg32

and VC-Atg11. Wild-type and VN-Atg32-VC-Atg11 cells were

grown in a nonfermentable carbon source and then shifted

to SD-N to induce mitophagy. The mitoPho8D60 activity of

VN-Atg32-VC-Atg11 cells was similar to that of wild-type cells,

which indicated that mitophagy occurred normally when

Atg32 and Atg11 were fused with VN and VC, respectively

(Figure S1C). The atg32D strain served as a negative control,

and displayed only a background level of activity. Second,

we stained the mitochondria with MitoTracker Red dye and

examined the localization of the 32-11 dots relative to the

organelle. When mitophagy was induced following a 30 min

shift to SD-N, most of the 32-11 dots were localized on the

mitochondrial reticulum (Figure S1D). Subsequently, we used

the FM 4-64 dye to mark the vacuole. Immediately after the

shift to SD-N, no 32-11 dots were detected in proximity to

the vacuole (data not shown). Within 1 hr after mitophagy

induction, however, we detected 32-11 dots localized close

to the vacuole limiting membrane (Figure S1E); this perivacuo-

lar location likely corresponds to the PAS. Finally, by 6 hr after

shifting to SD-N, very few 32-11 dots could be detected in

wild-type cells; however, atg1D mutant cells that are defective

in mitophagy continued to accumulate 32-11 dots, which

indicated that the degradation of mitochondria marked by

the VN-Atg32-VC-Atg11 BiFC interaction was dependent on

an intact autophagy pathway (Figures S1F and S1G). There-

fore, based on the observations that (1) VN-Atg32 and

VC-Atg11 are functional fusion proteins; (2) 32-11 dots local-

ized on mitochondria shortly after inducing mitophagy; (3) at

a later time point, the 32-11 dots subsequently showed a vac-

uole-peripheral PAS localization; and (4) the loss of the 32-11

signal was dependent on autophagy, we concluded that the

32-11 dots were an appropriate marker to monitor degrading

mitochondria.

In order to clarify the sequential steps of mitophagy, we used

a plasmid containing red fluorescent protein targeted to mito-

chondria (Mito-RFP) and CellTracker Blue CMAC dye to mark

the mitochondria and vacuole lumen, respectively, which

enabled us to observe both organelles and determine the local-

ization of the 32-11 signal. In growing conditions, when mi-

tophagy was not induced, very few 32-11 dots were detected,

which was defined as stage 0 (Figure 2C, row 1). After a short

time of starvation (10–30 min), when mitophagy was initiated,

32-11 puncta were formed on the mitochondrial reticulum,

which was defined as stage 1 (Figure 2C, rows 2 and 3). After

longer times of starvation (approximately 40–60 min), even

though most of the 32-11 puncta were still localized on the

mitochondrial reticulum, some of the puncta were detected in

proximity to the vacuole, which corresponded to the presence

of mitophagosomes. We defined this step as stage 2 (Fig-

ure 2C, row 4). The earliest we were able to detect the vYFP

signal in the vacuole was after approximately 50 min starva-

tion, and the RFP signal was also seen in the vacuole at this

time, which suggested the degradation of mitochondria in the

vacuole lumen. We defined this step as stage 3 (Figure 2C,

rows 5 and 6).
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Dnm1 Is Recruited to the Degrading Mitochondria
through Its Interaction with Atg11
Dnm1 assembles specifically at the sites where mitochondrial

fission occurs. Therefore, we next asked whether Dnm1 accu-

mulated on the degrading mitochondria, which were marked

by 32-11 dots. Accordingly, we chromosomally tagged Dnm1

with mCherry and examined its localization together with the

32-11 dots. Several Dnm1-mCherry puncta that colocalized

with 32-11 dots were seen when mitophagy was induced

by nitrogen starvation, and this colocalization occurred on

the mitochondrial reticulum, which was marked by blue

fluorescent protein targeted to mitochondria (Mito-BFP) (Fig-

ure 3A). We also chromosomally tagged Mdv1 and Caf4 with

mCherry. Similar to Dnm1-mCherry, both Mdv1-mCherry and

Caf4-mCherry were colocalized with 32-11 dots (Figures S2A

and S2B).

Based on these observations, we hypothesized that there

were two groups of Dnm1, one of them assembling on the

mitochondria destined for degradation in order to promote

mitophagy-specific fission and the other functioning in the

normal process of constitutive mitochondrial division. A key

question with regard to this first population would be the mech-

anism through which Dnm1 can be specifically recruited to

sites that correspond to mitochondria that are destined for

degradation. We hypothesized that Atg32 or Atg11 might be

able to interact with Dnm1, Fis1, Mdv1, and/or Caf4. To deter-

mine whether Atg32 or Atg11, which we just showed mark this

population of mitochondria, played a role in Dnm1 localization,

we constructed eight strains expressing different combinations

of Atg11, Atg32 and the fission machinery components as

BiFC chimeras: VC-Atg11 coexpressed with Dnm1-VN, VN-

Atg11 with VC-Fis1, VC-Atg11 with Mdv1-VN, VC-Atg11 with

Caf4-VN, VN-Atg32 with Dnm1-VC, VN-Atg32 with VC-Fis1,

VN-Atg32 with Mdv1-VC, and VN-Atg32 with Caf4-VC; we

used the BiFC assay to test the interactions of these chimeric

pairs. All eight strains were tested in both growing (YPL) and mi-

tophagy-inducing (SD-N) conditions. The fluorescent signal

could only be observed in cells expressing VC-Atg11 and

Dnm1-VN or VN-Atg11 and VC-Fis1 (Figure S2C). The chimeric

constructs were stable and did not change in expression level

during the course of the analysis, indicating that the fluorescent

signals reflected protein localization rather than changes in

protein concentration (Figure S2D).

To extend our analysis, we then examined where the interac-

tions occurred. Therefore, we stained the mitochondria with

MitoTracker Red dye and examined the localization of the

Atg11-Dnm1 and Atg11-Fis1 dots relative to the organelle.

Atg11-Fis1 dots were localized on the mitochondrial reticulum

in both growing and starvation conditions (Figure 3B). However,

in VC-Atg11 Dnm1-VN cells, although Atg11-Dnm1 dots were

observed on the mitochondrial reticulum, the mitochondrial

morphology was abnormal, which resembled that in dnm1D

cells. It was reported that the BiFC assay allows the detection

of weak and transient interactions, but that these interactions

are stabilized by the formation of an intact YFP. Thus, we consid-

ered that the stabilized binding of VC-Atg11 and Dnm1-VN

prevented the free Dnm1, which functions as an oligomer, from

participating in the normal process of constitutive mitochondrial

fission. Therefore, in order to provide additional free Dnm1 in the
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Figure 3. Atg11 Recruits Dnm1 to the Degrading Mitochondria

(A) VN-ATG32 VC-ATG11 DNM1-mCherry cells, transformed with a plasmid encoding Mito-BFP, were cultured in SML and shifted to SD-N for 1 hr, and samples

were observed by fluorescence microscopy. Arrowheads indicate the colocalized 32-11 dots with Dnm1-mCherry on the mitochondrial reticulum. All of the

images are representative pictures from single Z-sections. DIC, differential interference contrast. Scale bar, 2 mm.

(B) VC-ATG11 DNM1-VN cells transformed with empty vector or pDnm1-3HA, VC-ATG11 cells transformed with pDnm1-VN, and VN-ATG11 VC-FIS1 cells

transformed with empty vector were cultured in SML and shifted to SD-N for 1 hr. Samples were observed by fluorescence microscopy as in (A). Scale bar, 2 mm.

(C) VC-ATG11DNM1-mCherry cells, transformed with pDnm1-VN, were cultured in SML and shifted to SD-N for 30min. Samples were observed by fluorescence

microscopy as in (A). Scale bar, 2 mm.

See also Figure S2.
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cells, we transformed either a plasmid harboring Dnm1-3HA into

the VC-Atg11 VN-Dnm1 cells or a plasmid harboring Dnm1-VN

into the chromosomally integrated VC-Atg11 cells. In both

cases, the mitochondrial morphology was normal and the

Atg11-Dnm1 dots were localized on the mitochondrial reticulum

(Figure 3B).

To further demonstrate the existence of two different popula-

tions of Dnm1, one of which interacted with Atg11, we asked

whether the localization of Dnm1 was affected when Atg11 or

Atg32 was absent. Accordingly, we chromosomally tagged

Dnm1 with GFP in wild-type, atg11D, and atg32D cells, and

tracked the mitochondria with a plasmid-driven Mito-RFP. In

both growing and nitrogen-starvation conditions, the cellular

pattern of Dnm1-GFP and mitochondrial morphology was

normal in either atg11D or atg32D cells, which suggested that

neither Atg11 nor Atg32 would affect the function of the normal

mitochondrial fission machinery (Figure S2E). We also noticed
that even though many Dnm1-GFP puncta were detected in

each cell (Figure S2E), only a few Dnm1-Atg11 interacting dots

were formed (Figure 3B), which also supported our hypothesis

that there were two different population of Dnm1. To directly

observe these two groups of Dnm1, we generated a yeast strain

with VC-Atg11 and Dnm1-mCherry on the genome and trans-

formed these cells with a plasmid harboring Dnm1-VN. The

Dnm1 puncta corresponded to an oligomeric mixture of both

Dnm1-mCherry and Dnm1-VN, and as a result all of the Dnm1

puncta showed a mCherry signal; however, only the small pop-

ulation associated with VC-Atg11 also showed a vYFP signal

(Figure 3C).

A previous report demonstrated that mitochondrial fission

happens at the ER-mitochondria contact sites (Friedman et al.,

2011). We wondered whether mitophagy-specific fission

also occurred at these sites. Accordingly, we cotransformed

plasmids containing Mito-BFP and HDEL-DsRed to track the
Developmental Cell 26, 9–18, July 15, 2013 ª2013 Elsevier Inc. 13
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Figure 4. The ER Participates in Mitophagy-

Specific Fission

(A) VN-ATG32 VC-ATG11 (KDM1501) cells, trans-

formed with plasmid encoding Mito-BFP and

pHDEL-DsRed, were cultured in SML and shifted to

SD-N for 30 min.

(B and C) VN-ATG32 VC-ATG11 MDM12-mCherry

(KDM1561) and VN-ATG32 VC-ATG11 MDM34-

mCherry (KDM1562) cells were cultured in YPL and

shifted to SD-N for 30 min.

The cells in (A, B, and C) were analyzed by fluores-

cence microscopy. The images are representative

pictures from single Z-sections. DIC, differential

interference contrast. Scale bars, 2 mm.
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mitochondria and ER, respectively. We found that some of the

32-11 dots were indeed localized at the ER-mitochondria con-

tact sites (Figure 4A). Previous work also reported an ERMES

(ER-mitochondria encounter structure) complex localized at

the ER-mitochondria contact sites (Kornmann et al., 2009).

This complex includes four proteins: Mmm1 and Mdm12, which

are on the ER side, and Mdm10 and Mdm34, which are on the

mitochondria side of the complex. We fused mCherry at the C

terminus of Mdm12 or Mdm34 in the yeast genome and

observed the localization of these proteins together with the

32-11 dots. We observed the colocalization of 32-11 dots with

some of the Mdm12-mCherry andMdm34-mCherry puncta (Fig-

ures 4B and 4C). These observations suggested that the ER, in

particular at the ER-mitochondria contact sites, might also

participate in mitophagy-specific fission.

The Dnm1-Atg11 Interaction Is Required for Mitophagy
Dnm1 contains four domains: GTPase, middle, insert B, and

GED (GTPase effector domain) (Fukushima et al., 2001; Figure 5).

In order to find a Dnm1 mutant that lost its binding to Atg11, we
14 Developmental Cell 26, 9–18, July 15, 2013 ª2013 Elsevier Inc.
examined the interaction of Dnm1 mutants

with Atg11 by the BiFC assay. Almost no

interacting dots were observed when the

GED (�87 amino acids at the C terminus)

was deleted (Figures 6A and 6B), which

implied that the GED is required for binding

to Atg11. We then made truncations of

Dnm1 from the C terminus. The interacting

dots were detected when we deleted the

last 24 amino acids (Dnm1-VN 24D); how-

ever, very few fluorescent dots were seen

when the last 30 amino acids were absent

(Dnm1-VN 30D) (Figure 6A and B). To verify

the observation from the BiFC assay,

we carried out protein A affinity isolation

with immunoglobulin G (IgG)-Sepharose.

Protein-A-tagged wild-type Dnm1 or the

mutant without the last 24 amino acids

coprecipitated hemagglutinin (HA)-Atg11;

however, the Dnm1 mutant lacking the

last 30 amino acids was not able to precip-

itate this protein (Figure 6C).

We hypothesized that the six amino

acids (EDQTLA) that exist in Dnm1 24D,
but not Dnm1 30D, might be important for Dnm1 binding to

Atg11. Therefore, we made two Dnm1 mutants: Dnm1 4R, in

which the first four amino acids, EDQT, were substituted with

arginine, and Dnm1 5A, in which the first five amino acids,

EDQTL, were substituted with alanine. We then examined the

interaction of these two Dnm1 mutants with Atg11 by the BiFC

assay. Interacting dots were detected with wild-type Dnm1,

but almost none were seen with the Dnm1 4R or 5Amutants (Fig-

ures 6D and 6E). Consistent with this result, protein-A-tagged

Dnm1 4R or 5A were not able to coprecipitate HA-Atg11 by affin-

ity isolation using IgG-Sepharose (Figure 6F). Furthermore, these

mutants resulted in a block in mitophagy activity similar to that

seen with the complete absence of Dnm1 (Figure S3A).

Even though Dnm1 4R or 5A lost the ability to interact with

Atg11, we asked whether these two mutants still retained the

normal function of Dnm1. Therefore, we used the plasmid-driven

Mito-RFP to determine the mitochondrial morphology in the

presence of the Dnm1 4R or 5A mutant. Mitochondrial

morphology was normal in wild-type cells, whereas enlarged

mitochondria were seen in dnm1D cells (Figure S3B). The



Figure 5. Domain Structure of Dnm1 and GED Mutations

The domains of Dnm1 are depicted in the top diagram, and the position of the

GED domain (amino acids 670–757) is indicated. The C-terminal truncations,

GEDD, 24D, and 30D are depicted in themiddle diagrams. The sequence of the

six amino acid residues comprising E728 through A733 in the GED that are

required for the interaction with Atg11 and the mutations 5A and 4R are shown

at the bottom.
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expression of protein-A-tagged wild-type Dnm1 from the

plasmid was able to rescue the defect of mitochondrial fission

in dnm1D cells, whereas neither Dnm1 4R nor 5A could rescue

the defect (Figure S3B). We suspected the loss of function of

Dnm1 4R or 5A was due to the loss of interaction with Mdv1,

Caf4, and/or Fis1. Therefore, we carried out affinity isolation

with IgG-Sepharose and found that protein-A-tagged Dnm1 4R

or 5A was unable to coprecipitate HA-Mdv1, HA-Caf4, GFP-

Fis1, or GFP-Atg32 (Figure S4). Accordingly, we generated

additional Dnm1 mutants with single amino acid changes in

the interaction domain that we had identified. We found that

Dnm1 E728R and D729R, but not Q730R or T731R, had a

reduced interaction with Atg11 (Figure 7A) but maintained the

normal function of Dnm1 with regard to mitochondrial fission

and interaction with Mdv1, Caf4, and Fis1 (Figures S4A–S4C).

Similarly, Dnm1 E728R and D729R were not able to coprecipi-

tate GFP-Atg32, in contrast to Dnm1 Q730R or T731R, in

agreement with a role for Atg11 as a scaffold that bridges the

interaction between Dnm1 and Atg32 (Figure S4D).

Finally, we asked whether the Dnm1 mutants that lost binding

to Atg11 were competent for mitophagy. Therefore, we deter-

mined the mitophagy activity of the dnm1D strain containing

empty vector or vector harboring either wild-type Dnm1 or the

single amino acid mutants using the mitoPho8D60 assay. The

presence of wild-type Dnm1 largely suppressed the mitophagy

defect in the dnm1D mutant strain, and similar results were

obtained with the Dnm1 Q730R or T731R mutants. In contrast,

the Dnm1 E728R or D729R mutants displayed decreased

mitoPho8D60 activity (Figure 7B). Based on these results, we

suggest that the interaction of Dnm1 and Atg11 is required for

efficient mitophagy, although we do not yet know if this inter-

action is direct or is mediated by another protein(s).

DISCUSSION

Autophagy regulates the degradation of cytoplasmic compo-

nents and organelles. In nonselective autophagy, the amount

of Atg8 controls the size of the autophagosomes (Xie et al.,

2008). In contrast, during selective types of autophagy, the

phagophore membrane is in close apposition to the cargo,

excluding bulk cytoplasm. Thus, partly different mechanisms

may be involved in determining curvature of the phagophore

and the ultimate size of the autophagosome. In the cytoplasm-

to-vacuole targeting (Cvt) pathway, a biosynthetic route that
delivers resident hydrolases to the vacuole, the size of the cargo

is relatively small; however, when the primary cargo of the Cvt

pathway is overexpressed, it forms a larger complex that is no

longer efficiently sequestered (Baba et al., 1997), indicating

that there is a size limit for Cvt vesicle formation. Similarly, size

may be an issue for organelles that are destined for degradation,

especially for organelles such as mitochondria, which exist

largely as an extended, reticular structure. Therefore, it is

possible that large organelles need to be divided into smaller

pieces in order to be effectively engulfed by phagophores.

Here, we showed that mitochondrial division is important for

mitophagy, which leads to the question of how mitochondrial

fission participates in this process. If fission and mitophagy

occur independently, we could imagine that mitochondrial

fission happens constitutively and only the resulting small mito-

chondrial fragments would be chosen for degradation. In this

case, there would be no requirement for a direct connection

between the fission complex and the mitophagy machinery. In

contrast, if fission and mitophagy occur in a coordinated

manner, then the mitochondria destined for degradation should

be selected first and then the fission complex would be recruited

to drive the separation of these mitochondria from the mito-

chondrial reticulum. The direct interaction between Atg11 and

Dnm1 supports the second model. Therefore, we propose that

when mitophagy is induced, Atg32 recruits Atg11 to the degrad-

ing mitochondria. Atg11 in turn brings Dnm1 and other mito-

chondrial fission proteins to these ‘‘marked’’ mitochondria and

promotes their division. These small fragments of mitochondria

are subsequently transported to the PAS where other Atg

proteins accumulate, initiating the formation of mitochondria-

specific autophagosomes (mitophagosomes).

As a scaffold protein and selective autophagy adaptor, Atg11

binds to a variety of cargo receptors to mediate different types

of selective autophagy. For example, Atg11 binds to Atg19,

Atg32, and Atg36 for cargo selection during the Cvt pathway,

mitophagy, and pexophagy, respectively (Kanki et al., 2009b;

Kim et al., 2001; Motley et al., 2012; Shintani et al., 2002; Yori-

mitsu and Klionsky, 2005). Atg11 also interacts with Atg1 and

Atg17, which connects the step of cargo selection to the initia-

tion of autophagosome formation (Yorimitsu and Klionsky,

2005). Here, we unveil a role for Atg11: recruiting mitochondrial

fission machinery to facilitate mitophagy.

Previous results indicated that Atg32 is evenly distributed

on the mitochondria, even in mitophagy-inducing conditions

(Mao et al., 2011). In contrast, the BiFC Atg32-Atg11 interact-

ing pair displayed a punctate pattern on the mitochondrial

tubules. We suggest that these dots represent the degrading

mitochondria. However, it remains unknown as to how Atg11

recognizes and binds only the Atg32 that marks the organelles,

or segments of the organelles, that are to be degraded. Thus,

some other factor(s) might determine this very early event in

mitophagy.

The degradation of peroxisomes and chloroplasts through

autophagy pathways in Pichia pastoris, S. cerevisiae, Arabidop-

sis thaliana, and other organisms has been reported (Farré et al.,

2008; Hutchins et al., 1999; Motley et al., 2012; Wada et al.,

2009). It was also reported that the mitochondrial fission

complex (Dnm1, Fis1, Mdv1, and Caf4) controls the fission of

peroxisomes in yeast and peroxisomes and chloroplasts in
Developmental Cell 26, 9–18, July 15, 2013 ª2013 Elsevier Inc. 15
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Figure 6. Mutation of the Dnm1 C Terminus Blocks Mitophagy

(A) Cells containing BiFC pairs (Atg11-Dnm1 in KDM1523, Atg11-Dnm1

[GEDD] in KDM1528, Atg11-Dnm1 [24D] in KDM1532, and Atg11-Dnm1 [30D]
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plants (Kuravi et al., 2006; Motley et al., 2008; Zhang and Hu,

2010). Thus, we propose that the mechanism we show in this

study (receptor-scaffold/adaptor-fission complex) may also be

relevant in selective pexophagy and chloroplast autophagy.

EXPERIMENTAL PROCEDURES

Strains, Media, and Growth Conditions

See Supplemental Experimental Procedures for a description of the yeast

strains used in this paper. Yeast cells were grown in rich (YPD; 1% yeast

extract, 2% peptone, and 2% glucose) or synthetic minimal (SMD; 0.67%

yeast nitrogen base, 2% glucose, and auxotrophic amino acids and vitamins

as needed) media. For mitochondria proliferation, cells were grown in lactate

medium (YPL; 1% yeast extract, 2% peptone, and 2% lactic acid) or synthetic

minimal medium with lactic acid (SML; 0.67% yeast nitrogen base, 2% lactic

acid, and auxotrophic amino acids and vitamins as needed). Mitophagy was

induced by shifting the cells to nitrogen-starvation medium with glucose

(SD-N; 0.17% yeast nitrogen base without ammonium sulfate or amino acids

and 2% glucose).

Fluorescence Microscopy

For fluorescence microscopy, yeast cells were grown to optical density

600 �0.6 in YPL or SML media and shifted to SD-N for nitrogen starvation.

Samples were then examined by microscopy (Delta Vision, Applied Precision)

using a 1003 objective and pictures were captured with a CCD camera

(CoolSnap HQ; Photometrics). For each microscopy picture, 12 Z-section

images were captured with a 0.3 mm distance between two neighboring sec-

tions. MitoTracker Red (Invitrogen/Molecular Probes) was used to stain the

mitochondria, CellTracker Blue CMAC (Invitrogen/Molecular Probes) to stain

the vacuolar lumen, and FM 4-64 (Invitrogen) to stain the vacuolar membrane.

Additional Assays

The mitoPho8D60 assay and immunoprecipitation were performed as

described previously (Kanki et al., 2009a, 2009b).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.devcel.2013.05.024.
in KDM1533) were cultured in YPL and shifted to SD-N for 1 hr. Samples were

observed by fluorescence microscopy, and all the images are representative

pictures from single Z-sections. DIC, differential interference contrast.

(B) Quantification of (A). 12 Z-section images were projected and the per-

centage of cells that contained BiFC Dnm1-Atg11 dots was determined.

Standard error was calculated from three independent experiments. *p < 0.01.

(C) The plasmid pCuHA-Atg11 was transformed into atg11D (YTS147), atg11D

DNM1-PA (KDM1247), atg11D DNM1(24D)-PA (KDM1248), and atg11D

DNM1(30D) (KDM1249) cells. Cells were cultured in SML and shifted to SD-N

for 1.5 hr. Cell lysates were prepared and incubated with IgG-Sepharose for

affinity isolation as described in Experimental Procedures. The eluted proteins

were separated by SDS-PAGE and detected with monoclonal anti-HA anti-

body and an antibody that binds to PA.

(D) VN-ATG11 (KDM1535) cells, transformedwith pDnm1-VC, pDnm1(4R)-VC,

or pDnm1(5A)-VC, were cultured in SML and shifted to SD-N for 1 hr. Samples

were observed by fluorescence microscopy as in (A).

(E) Quantification of (D). Twelve Z-section images were projected and the

percentage of cells that contained BiFC Dnm1-Atg11 dots was determined.

Standard error was calculated from three independent experiments. *p < 0.01.

(F) The plasmid pCuHA-Atg11 together with pDnm1-VC, pDnm1(4R)-VC, or

pDnm1(5A)-VC were transformed into atg11D dnm1D (KDM1251) cells. The

cells were cultured in SML and shifted to SD-N for 1.5 hr. Cell lysates were

prepared and analyzed as in (C).

See also Figure S3.
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Figure 7. Dnm1 Mutants that Lose Binding to Atg11 Are Mitophagy
Defective

(A) The plasmid pCuHA-Atg11 together with pDnm1-PA, pDnm1(E728R)-PA,

pDnm1(D729R)-PA, pDnm1(Q730R)-PA, or pDnm1(T731R)-PA was co-

transformed into atg11D dnm1D (KDM1251) cells. Cells were cultured in SML

and shifted to SD-N for 1.5 hr. Cell lysates were prepared and incubated with

IgG-Sepharose for affinity isolation as described in Experimental Procedures.

The eluted proteins were separated by SDS-PAGE and detected with mono-

clonal anti-HA antibody and an antibody that binds to PA.

(B) MitoPho8D60 wild-type (KDM1009) cells were transformed with empty

vector; mitoPho8D60 dnm1D (KDM1014) cells were transformed with empty

vector, pDnm1-PA, pDnm1(E728R)-PA, pDnm1(D729R)-PA, pDnm1(Q730R)-

PA, or pDnm1(T731R)-PA. Cells were cultured in SML to mid-log phase and

then shifted to SD-N for 6 hr. The mitoPho8D60 assay was performed as

described in Experimental Procedures. Error bars correspond to the standard

error and were obtained from three independent repeats. *p < 0.01.

See also Figure S4.
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